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Roman

A Constant of the viscous sublayer fit -- = A(y + Ay) + B(y + Ay) 4
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C Log law of the wall constant -- U = I ln(y/) + C

Cf Skin friction coefficient

Cfo Skin friction coefficient for zero high free-stream turbulence

d Diameter of turbulence generator jet-holes, or diameter of the LDV
measurement volume, or diameter of generator rod (used on Figure
3.88)

E~u One dimensional longitudinal velocity spectra

f(r) Autocorrelation function

Gii Spectral data

H Shape factor

L Dissipation length parameter (based on the turbulent kinetic
energy)

Lu Dissipation length parameter (based on isotropic turbulence)

Luu Integral length scale

m Mass flow rate

Q Volumetric flow rate

Re0  Momentum thickness Reynolds number

Rex Taylor scale Reynolds number

Ruu Autocorrelation coefficient
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r Spacing of f(r) - (time delay times local velocity)

1/S Shear stress parameter

TI Turbulence intensity

TKE Turbulent kinetic energy

Tuu Integral time scale

U, V, W Mean velocities in x, y, z directions, respectively

u',v',w' Velocity fluctuations in x, y, z directions, respectively

2 2 2Renlssrssu ', 'w Reynolds kinematic normal stresses

- uv,-uw,-vw Reynolds kinematic shear stresses

U+ Non-dimensional mean velocity normalized by U,

Ue Edge velocity

Uref Reference free-stream velocity

U, Skin friction velocity

Vq Transport of kinetic energy

X Stream-wise direction in tunnel coordinates

Y Vertical direction in tunnel coordinates

+y +Non-dimensional distance from the wall, yU,/v

Yshift Wall location refinement

z Span-wise direction in tunnel coordinates

Greek

Hancock-Bradshaw parameter

65 Boundary layer thickness
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8* Displacement thickness

Dissipation rate

F Gamma function
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K
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X-i Eigenvalue

rl Kolmogorov length scale and invariant of Lumley's triangle (y-
axis)

Invariant of Lumley's triangle (x-axis)

0 Momentum thickness

T Time delay

v Kinematic viscosity

Abbreviations

CompLDV Comprehensive Laser Doppler Velocimetry

HFST High Free-Stream Turbulence

LDV Laser Doppler Velocimetry

TKE Turbulent Kinetic Energy
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Chapter 1 Introduction

1.1 Motivation for the present study

Despite of the numerous efforts and experimental studies undertaken in the past decades,
the influence of high free-stream turbulence on turbulent boundary layers is still not
completely understood. High free-stream turbulence affects the internal flow of jet
engines. The flow that enters the turbine is the flow that exits the jet engine's combustor,
which has turbulence intensities in the order of 20%. (See Figure 1.1)

I. Inlet
II. Compressor
In1. Combustor
IV. Turbine
V. Afterburner (if equipped)

11 I VI V1. Nozzle

Figure 1.1: Schematic of a jet engine

The objectives of this research project were to contribute to the expansion of the
community's high free-stream turbulence "knowledge database", to provide experimental
data that will help on the improvement and validation of turbulence models, and to
characterize the flow in the Aerospace and Ocean Engineering Boundary Layer Wind
Tunnel, which will be impinging three-dimensional bodies subjected to high free-stream
turbulence effects. All work presented in this thesis is on nominally two-dimensional
turbulent boundary layers. High free-stream turbulence studies on three-dimensional
boundary layers will be done in the future and may be found in Lowe (2006).

As mentioned earlier, the two-dimensional turbulent flow needed to be characterized,
before three-dimensional studies can be made. The future three-dimensional study will
simulate the flow around one turbine blade, where a wing/body junction (see Figure 1.2)
will be used. The wing/body junction creates a three-dimensional pressure driven flow,
which simulates exactly the flow around a turbine blade, which contains three-
dimensional separation upstream of the blade and the formation of chaotic horseshoe
vortex structures that wrap around the blade (Simpson, 2001).

In a turbulent boundary layer without free-stream turbulence effects, most of the
turbulence is generated in the "inner" part due to the strong shear close to the wall. In the
"outer" part, the turbulence dissipation rate exceeds its production, therefore, the
turbulence production decreases with increasing normal distance from the wall.

Turbulence measurements made in half-constrained and unconstrained turbulent shear
flows near a free-stream have shown that the flow is intermittently turbulent-non-
turbulent in this region. According to Simpson (1973), flow visualization results by Rotta
(1962), Grant (1958), and Fiedler and Head (1966) show that there exists a distinct
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boundary between the turbulent fluid and non-turbulent fluid, called the "viscous
superlayer", which has an irregular, time-dependent shape with a very large interfacial
area.

Trailing 4d6P
aparatlon

Ilorseslo

a.--separation
line

Figure 1.2: Wing/body junction (simulating a turbine blade) [Simpson 2001, modificd]

Non-turbulent fluid is converted to turbulent fluid as the shear layer moves downstream.
The conversion process is called entrainment. Flow instabilities cause depressions on the
viscous superlayer. These depressions grow to large amplitudes and rapidly move into the
surrounding non-turbulent fluid. The rapidly moving fluid composed of three-
dimensional bulges of size or scale of the shear layer thickness, rolls up and surrounds
some of the non-turbulent fluid. The surrounding process is called engulfment. The
engulfed non-turbulent fluid is convected with the shear layer. At the viscous superlayer,
viscous mixing occurs, transmitting vorticity to the engulfed fluid, and therefore causing
it to become turbulent. The flow near the free-stream boundary is then characterized by
irrotational fluid trapped between the three-dimensional bulges of turbulent fluid.

Non-Turbulent Fluid

"viscous Superlayer '
Large area interface
between turbulent
and non-turbulent fluid

Turbulent Fluid

Figure 1.3: Engulfment process (After drawing of Simpson (1973))

In a turbulent boundary layer with free-stream turbulence effects, there exists the
possibility of energy transport from the free-stream to the turbulent boundary layer.
Several authors have shown in previous studies that free-stream turbulence increases the
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skin friction and that implies that the turbulence production increases. The integral length
scale of the free-stream turbulence also affects the boundary layer. Increasing the free-
stream turbulent intensity may cause the lengthscale to penetrate deeper into the
boundary layer.

Small free-stream fluctuations do not strongly influence the turbulent-non-turbulent
interface or boundary, while large free-stream fluctuations produce a series of waves or
wavelike segments that influence the turbulent flow beneath. According to Cousteix and
Houdeville (1988) "long wavelength unsteady free-stream fluctuations have almost no
effect on the boundary layer beneath, as long as the flow is not near separation with
strong adverse pressure gradients." In addition, this condition is reflected in long
streamwise integral length scales. As it is known, the free-stream turbulence and the
boundary layer turbulence generated near the wall are not coherent and are at different
streamwise wavelengths, therefore there can only be very small interaction and effect on
the Reynolds-averaged ergodic statistics. Based on the nature of the turbulent-non-
turbulent interface and on the entrainment process, it is expected that only the high free-
stream turbulence intensities with comparable wavelengths to those being produced by
the boundary layer will show non-linear interactions and affect the Reynolds-averaged
behavior.

For the first time, due to the technology available for this experiment, the skin friction
coefficient (Cf) was deduced from the viscous sublayer, whereas in most of the previous
published studies the authors assumed a semi-log layer with low free-stream turbulence
constants to obtain the skin friction.

1.2 Previous free-stream turbulence studies

Hancock and Bradshaw (1983) made mean flow and turbulence measurements in an
incompressible two-dimensional turbulent boundary layer at constant pressure (zero
pressure gradient). The free-stream turbulence (4% intensity) was nearly homogeneous
and nearly isotropic, and was generated by square-mesh/square-bar biplane grids.
Boundary layer measurements were made on a 15-mm thick flat plate which was 2.4 m
long and was positioned half way between the tunnel's ceiling and floor. In order to
reduce fluctuating separations the plate's leading edge was ogive-shaped. Skin-friction
measurements were obtained from pitot-tube velocity profile measurements in the log
region using the assumption that the log law is valid under free-stream turbulence
conditions. The flow's two-dimensionality was checked by using Preston tubes that were
positioned at the plate's centerline.

Based on their measurements, Hancock and Bradshaw concluded that the velocity
approaches the free-stream value slowly when the free-stream turbulence intensity is
high. The shear stress approaches zero outside the boundary layer while the three mean
square intensities or normal stresses become almost equal. They also concluded that the
free-stream length scale has a large effect on the boundary layer's response and that there
is a nonlinear relationship between the effects of free-stream turbulence and the free-
stream turbulence intensity.

3



Hancock and Bradshaw also defined two parameters: the dissipation length parameter

(L,), which is based on the decaying isotropic turbulence, Ue d(u 2 ) wh-e

x is the distance from the turbulence generator grid and the free-stream turbulence
parameter (P3) that combines the dependence of the skin friction on the turbulence

intensity and dissipation length scale, L8- = , where is the turbulence
r" +2

999.5

intensity.

Hancock and Bradshaw (1989) made new measurements for a wide variety of length-
scales in a turbulent boundary layer also on a flat plate with zero pressure gradient.
Nearly isotropic free-stream turbulence was generated by a grid, as in the studies from
1983. In that study the authors used conditional sampling techniques with the flat-plate
boundary layer heated near the leading edge to set apart the free-stream fluid from the
boundary-layer fluid. The velocity fluctuations (u, v, w) and their spectra were measured
in the free-stream. Pitot tubes were used to measure mean velocities and the skin-friction
coefficients were obtained from semi-log plots assuming that the semi-log law of the wall
mean velocity profile remains valid under free-stream turbulence conditions. Velocity
fluctuation measurements were made by using crossed hot-wire anemometers while
temperature fluctuation measurements were made with a single wire operated at constant
current.

Based on the measurements published in 1989, Hancock and Bradshaw concluded that
near the wall there was an increased loss of turbulent kinetic energy by diffusion, larger
free-stream length-scales infiltrate further into the boundary layer. Based on the turbulent
kinetic energy and shear-stress balances, they noticed that the free-stream turbulence has
no effect on the dissipation length parameter. Based on the fact that the dissipation length
parameter is not affected by the free-stream turbulence, the authors also concluded that
the shear stress provides a more meaningful velocity scale for the boundary layer
turbulence instead of the turbulence intensity.

Blair (1983ab) made mean flow and turbulence measurements in a two-dimensional
boundary layer at zero pressure gradient. The turbulence was generated by square-
mesh/square-bar biplane grids and the turbulence intensity varied from 0.25% to 7%.
Changes in the wall skin friction were obtained from wake depression measurements

Cf _ 4
using Bradshaw's equation: C1---(IH 0) 1HO Frl 2J 2

Blair pointed out by experimental data comparison that Hancock's and Bradshaw's free-
stream turbulence parameter (P3) only worked correctly for high Re6 . The 13-parameter
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over predicted the changes in skin friction at lower Re0 . Blair introduced a new parameter
named Hancock-Bradshaw-Blair (HBB), which is a function of Re0, turbulence intensity,

and dissipation length scale: HBB (U He also stated that
_ + 2 1 a s3expa that

the skin friction increased due to the higher levels of turbulence and that the semi-log
region of the mean velocity profile was relatively unaffected by changes in the free-
stream turbulence level.

Hollingsworth and Bourgogne (1995) conducted a study to document the response of a
turbulent boundary layer to a flow with high free-stream and approximately streamwise-
uniform levels of turbulent intensity. Measurements were taken in a two-dimensional
turbulent boundary layer beneath a free-stream produced by a two-stream mixing layer.
The flat plate used in the experiment was positioned downstream of a splitter wall used to
form the mixing layer, and the gradient direction of the mixing layer was parallel to the
boundary layer's span. Measurements of mean and fluctuating velocities were taken by
using hot-wires and the data were taken for free-stream turbulence intensities in the order
of up to 16%. The authors state that previous studies investigated the effects of free-
stream turbulent intensities below 10%, and free-stream turbulence was nearly isotropic
and generated by passive grids that create relatively low intensity and decays quickly as it
convects downstream. Turbulence generated by other means, such as mixing two flows
together, as shown in this paper by Hollingsworth and Bourgogne, generate higher
turbulence intensities, as high as 20%, that have a longer life. U, was determined using
two different approaches. The mean velocity profiles were fit from y+ = 30 to y+ = 70 to
the semi-log law of the wall using the Coles constants (K = 0.41 and C = 5). The resulting
U, from the law of the wall was compared to a U, obtained from a linear fit to the data for
y+ < 5. According to the authors those two U, values agreed to within ±2%. From their
experiments, the authors concluded that an excess in stream-wise momentum was formed
in and above the outer region of the boundary layer due to an interaction between the
vorticity fields of the boundary layer and the mixing layer. They also concluded that the
skin-friction increased by up to 73% compared to the expected values based on the
streamwise development length of the boundary layer. During the experiments the
authors were not successful with the free-stream turbulence decay. For some reason, the
turbulence level did not decay and the free-stream flow had a complex structure
producing three-dimensional effects on the boundary layer.

Thole and Bogard (1996) studied the effect of high free-stream turbulence on a flat plate
using an active turbulence generator. Their study contains experimental data of mean and
rms velocities, velocity correlation coefficients, length scales and power spectra for a
turbulent boundary layer subjected to high free-stream turbulence up to an intensity of
20%. The active generator was designed by the authors and consisted of a row of small,
high velocity, normal jets injecting air into the cross-flow mainstream. The mean and rms
velocities, and the uv correlation were obtained by using a two-component LDV system
with frequency shifting. Skin friction was estimated from the constant stress part of the
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log layer (- uv = U12). Integral time scales and power spectra were obtained by using hot-
wire measurements of the streamwise velocity fluctuations. A spectrum analyzer was
used to obtain the power spectra. The integral time scales were directly calculated from
correlations of the digitized hot-wire measurements or from the power spectra
extrapolated to zero frequency. Integral length scales were determined from the measured
integral time scales and mean velocities by using Taylor's hypothesis that the turbulence
convection speed was U.

Based on the results of their experiments, Thole and Bogard made several conclusions.
They concluded that the mean velocity profile retained the semi-log law near the wall for
all levels of free-stream turbulence tested, but the outer region of the profile had some
significant alterations. The direct measurements of total shear stress proved that the log
law is valid for the flows under high free-stream turbulence. The authors observed that
the high free-stream turbulence caused the outer part of the boundary layer to become
much flatter. In addition, the free-stream turbulent eddies penetrate into the boundary
layer at high free-stream turbulence levels, and that is proven by the measured
lengthscale and spectra. The velocity spectra were much broader than for the low free-
stream turbulence boundary layer and that is due to much larger lengthscales for the free-
stream turbulence. Finally, due to the uncorrelated nature of the free-stream turbulence
and the boundary layer generated turbulence, the Ru, correlation coefficient throughout
the boundary layer was reduced.

Stefes and Fernholz (2004) measured mean and fluctuating velocity profiles and the skin
friction in an axisymmetric turbulent boundary layer with zero pressure gradient and free-
stream turbulence intensities ranging from 1% to 13%. The ratio of the u-component
streamwise integral lengthscale in the free-stream and the boundary layer thickness
varied between 0.5 and 2 in the streamwise direction. The high free-stream turbulence
intensities were generated by jets injected normal to the flow. Measurements of mean and
fluctuating velocities were made by using a miniature single and x-wire probes. Skin
friction measurements were made by using Preston tubes, wall hot-wires and oil-film
interferometry. Under free-stream turbulence conditions the authors observed that the
skin friction increased by approximately 34%. The measured fractional increase in skin
friction correlated well with the Hancock-Bradshaw-Blair parameter. Stefes and Fernholz
state that the skin friction increase is due to the increased mixing by the free-stream
turbulence that penetrates into the boundary layer and which thereby reduces the mean
velocity gradient in the outer region, resulting in a fuller profile. The authors observed
that the mean velocity profile agrees with the linear-law and that the semi-log law in the
inner region of the boundary layer is independent of the free-stream turbulent intensity.
Other observations include the fact that the free-stream turbulence affects the wake
parameter and the mean velocity distribution in the outer layer significantly. Stefes and
Fernholz concluded that the distribution of the mean velocity is affected in a similar way
as by a mild favorable pressure gradient. They also observed that the distributions of

U,
2

Reynolds normal stress components, -i-, plotted in inner-law scaling, collapsed on top of
Ut

each other in the viscous sublayer and in the lower part of the of the buffer layer, but an
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